Examination

Det är en ofta upprepad föreställning att studenterna är offer för tentamenssystemet. "Tenta-lätt", att spara arbetet till dagarna närmast före tentan, och sedan stormplugga gamla tentor, beskrivs lika ofta som en lönsam strategi.

Med det vill man motivera att tentamensperioder, dvs. undervisningsfria perioder mellan kurserna och tentorna, avskaffas. Med samma motivering lanseras "alternativa examinationsformer" och "kontinuerlig examination".

Det mesta av detta är lögn. En student som skriver sin första tentamen har inte tillbringat ens 1 procent av sitt liv vid en teknisk högskola. Han är rimligen i högre grad formad av de tidigare 99 procenten.

Vi undervisare i matematik ser ofta tydligt hur studenter arbetar och har oftast öppen dialog med dem. Vi ser därför tidigt deras attityder och förväntningar. Föreställningen att inlärningen består av "typtal", vilka läraren ska lära ut (iställetför själva ämnet), uttrycks ofta, de senaste åren allt ivrigare, och mycket tidigt.


Tentamensperioder kommer av insikten att det inte är någon större idé att undervisa nyheter när studenter redan är i en intensiv repetitionsfas. Man kan undra vilka förställningar som vägleder dem som vill tvinga bort repetitionen. Att allt kan läras en gång för alla i en fix lineär följd? Så är det givetvis inte. Ständig repetition, och en avslutande genomgång av hela ämnet, krävs för att inarbeta tidigt stoff i sent och skapa en ämnesbild av djup, kvalitet, och bestående värde.

Studenter som tidigt och målmedvetet tar itu med sin inlärning försvarar givetvis tentamensperioderna. Det borde vara dessa studenter som gills. De har en ledande och katalyserande roll, som föredömen.

De som påstås taktiskt vänta till tentamensperioden med sitt arbete är inte alls medvetna taktiker utan snarare aningslösa. De kan vänta att allt bara ska hända med dem. De kan vara genuint oförmögna att strukturera en arbetsinsats på egen hand. I många av de diskussioner jag haft med studenter framskymtar en stor rädsla för att köra fast i sin ensamhet. Ofta gör sådana studenter inte mycket alls, ens under tentamensperioden.


Ett mellanskikt är de många studenter som arbetar mer sporadiskt under läsperioden, kanske med 50-60-procentig intensitet. De lever ofta i frustration att inte fatta något, aldrig riktigt få kontakt, och det är dessa studenter som mest desperat litar till tentasamlingar. Vad som därvid bearbetas kan då lätt komma att bestämmas av de ämnen som händelsevis dök upp på de tre senaste tentorna.

Är detta ett problem, så är det snarast ett undervisningsproblem. Studenter behöver hjälp och stöd att utnyttja sin tid samt att komma över den numera mycket höga viljetröskeln att läsa litteraturen, inte bara skumma fram lite exempel att följa. En stor del av hjälpen handlar om att tillfälligt hoppa över vissa saker. Tyvärr kan man konstatera att det allmänna läskunnandet kraftigt gått ned de senaste åren.

"Kontinuerlig examination", med ständiga tidsgränser, löser inte detta problem, men ställer åtskilliga andra. Från IT-linjen, speciellt, har vi sett att de ständiga avbrotten för inlämningar och redovisningar i andra ämnen förrycker inlärningsprocessen i matematik. Snart vill någon införa liknande i våra kurser. Då får vi villrådiga studenter så överlastade med kortsiktiga prestationskrav att de inte vet var de ska börja. Terrorbalans.

Inlämningsuppgifter leder också ofta till hämningslös och ogarderad avskrivning. Motsvarande inslag i överkurser och frivilliga kurser (där det är en praktisk nödvändighet) visar också studenternas benägenhet att spara även sådant till sista stund (bara det att det blir många sista stunder under en kurs) och närsynt inrikta sig på just dessa uppgifters tillfälliga lösning. Erfarenheten har visat att det som läres (eller, rättare, slås upp) för lösandet av ett akut problem är fort glömt. "Kontinuerlig" examination kan därigenom beröva studenterna nödvändig kontinuitet i inlärningen.


I kursen TATA10 Abstrakt Algebra har jag under sex av sju tillfällen hittills haft fuskproblem. Jag har löst dessa, utom senast, på andra vägar än de formella. Förtroenden är till för att missbrukas. Jag har ofta stött på inställningen (dock aldrig uttalad) att examination på inlämningsuppgifter är en garanti att släppas igenom, t ex genom kompletteringar i det ändlösa. En oförsiktig flexibilitet kan skapa oöverstigliga problem. Vad som skulle hända om sådan examination genomfördes i stora, obligatoriska, kurser är bara alltför lätt att inse.


Nu ska man ändå minnas att våra tentor, liksom gymnasieprov, består av "tal", vilket är det enda begripliga med dem när studenten börjar läsa. Under kurser övar vi också "tal" vilket kan bekräfta de invanda föreställningarna. Speciellt gäller detta om "talen" har likartade formuleringar, föregås av lärardemonstrationer och har lika entydiga svar som formuleringar.

Känslan att "talen" är mål, när de ska vara medel, kanske måste motverkas genom en rejäl förnyelse och breddning av uppgiftsrepertoiren.

Det är en svår och stor sak. Dels därför att tidsåtgången för konstruktionen av en enda uppgift kan vara avsevärd, dels därför att ett psykologiskt motstånd från studenthåll måste övervinnas. Lärare drar sig för det mesta i fråga om pedagogisk förnyelse av just sådana skäl. Det är på tiden att popularitetsbaserade utvärderingsformer slängs på sopbacken och att ledare på alla nivåer, från dekanus ned till studierektor, eller rentav den enskilde kursledaren, tar sitt ansvar att (åtminstone moraliskt) stödja all strävan till förnyelse, mot tröga opinioner.


Även om nu övandet, begreppsträningen, tillvänjningen, har formen av "tal" ser naturligtvis aldrig tillämpningarna ut på det viset. Som framhålles i programförklaringen kan tillämpningsinslag vara viktiga, inte för att motivera inlärningen, utan för att motivera kunskapens karaktär, att visa att vi inte försöker utbilda oändligt långsamma och nyckfulla datorer.

Man bör därför diskutera obligatoriska examinationsinslag utöver den sammanfattande salstentan, t ex i form av inläsning och resuméer av tillämpningar, storskaliga uppgifter och simuleringar. Detta bör (t ex av kostnadsskäl) ske i ett fåtal, noggrant utvalda, kurser. Här kan återigen erfarenheterna från D-linjens lineära algebra, TATA08, tjäna som (huvudsakligen negativt) exempel.

Åter till tablån