


Chapter E



E.I Introduction

The algebraic part of Ehrenpreis’ Fundamental Principle states roughly that a
system of linear partial differential equations, with complex constant coefficients,
is fully determined by its exponential solutions.

A reciprocal point of view turns the action around: instead of having the polynomial
(differential operator) act on the exponentials we may view the exponentials as
parametrized differential operators acting back on the polynomial. Palamodov calls
these operators Noetherian Operators, presumably in honor of Max Noether and
the famous Noether Conditions in curve theory.

If the symbols of the operators involved generate, e.g., a primary ideal ¢, then the
Ehrenpreis Principle may be stated as a membership criterion. A p-primary ideal
may be characterized by the Noetherian operators annihilating it on the variety
belonging to it, i.e., on reduction modulo p. Ehrenpreis speaks of "multiplicity
varieties", varieties equipped with a Noetherian operator. An algebraic geometer
would speak of "affine schemes".

These theorems were proved by Ehrenpreis and Palamodov, in [EHR] and [PALJ.
Unfortunately, their proofs are hard to follow, or even locate. There are cleaner

proofs in [HOR] and [BJO]. Hérmander’s treatment is arithmetic in flavor, utilizing
normalizations and discriminants. Bjork’s proof uses analytic completion and
flatness arguments, thereby inverting all discriminants and Jacobians.

In this note we offer a purely algebraic proof, requiring, of course, an algebraic
definition of (generic) exponential solution. The duality statement above is then
deduced as a special case of Matlis’ duality theory, which may be found in [MAT],
or the textbook [MAS].

The main step is to describe the injective envelope E(A/p) of the ring A/p, where
A is the polynomial ring k[zy,za,...,2,], (k a field of characteristic 0) and p is a
prime ideal.

I give two descriptions. The first depends on a Noetherian normalization and is the
one required here. The second does not depend on normalization. In it injective
envelopes are described as the highest cohomology of a de Rham complex; this
actually gives a means of comparing different normalizations. These are my main
results, and I believe at least the second one is new.

I have provided proofs of some well-known or at least folk-lore results, whenever
a suitable reference was lacking, or whenever special assumptions allowed more
transparent proofs than the ones usually given.

Towards the end of the paper I connect Noetherian Operators with the better known
concept of residues. They are pre-residues, the "pre" signifying an intermediate
result before taking traces from the quotient field K of A/p to a normalization

k(7).

In order not to delay this presentation further I offer this discussion in a rather
sketchy and incomplete stage. I hope to return to these matters in a later paper,
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along with applications to Elimination Theory. I have also saved a discussion of
fundamental classes (with a construction that I believe is new in the non-perfect
case) for a later communication. Therefore I will not discuss regularity questions
in this paper, i.e., all operators and residues are allowed to have their coefficients
in the full quotient rings.

The plan of the paper is

I) Introduction

IT) Wiebe Duality
ITIT) Regular Prime Bases
IV) Generic and True Exponentials
V) de Rham Cohomology and Trace
VI) E(A/p), First Determination
VII) E(A/p), Second Determination
VIII) Noetherian Operators, Ehrenpreis Duality
IX) Residues (sketch)
X) Examples
Notation
"Ring" will always mean "commutative Noetherian ring with 1". "Mapping" will

almost always mean " R-linear mapping', R being a ring.

k will denote an algebraically closed field of characteristic 0.
p, m will be prime ideals, m mostly maximal

q is a primary ideal (usually belonging to p).

Sometimes quite general ideals will be denoted I, .J.

Sometimes these letters will denote index sets. No confusion is possible. The
statements I < .J, J+TI are to be interpreted as component-wise inequality, addition,

etc. I < .Jmeans"I <.Jand I # J". fI refers to the sequence f;f, or the product
of these element; (f) is the ideal generated by that sequence. df is ... Adfp A, df ] f
is df /T fi.

A is the polynomial ring k[ Xy, Xo,... X,,] = k[X].

R = A/p as ring or A-module.

K is its quotient field, (A/p)p

() denotes full quotient ring, e.g., Q(A/q) = (A/d)p-

For the residue classes of the X;, in R, we write 7;. A’ will distinguish parameter
variables with respect to a Noetherian normalization, a " the fiber variables:

R = k[r] = k[r{,... ,T(;][T(QI_H, oot

n
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"
j
denote indeterminates or their residue classes modulo some p-primary ideal q.

Sometimes other symbols will be used.

Often we will have to use z},..., 2/, instead of the 7/. However, 2" will always

I will often have to consider objects like g(7', ") and g(7', 2"") side by side, or even

R(r', 7", 2"). In these cases reference to the 7’ is usually suppressed.

Our standard references in Commutative Algebra are [EIS|, [MAS], and [ZS] (still!).

I wish to thank Dr. Folke Norstad for devising the macro package "cowbook.tex"
used in this this paper (and other writings) and helping me in other TEX-nichal
matters.

I also wish to thank Professor Ernst Kunz at Regensburg for sending the book
[KRD] which, along with his numerous articles, helped clarify the interconnection
between various descriptions of residues.

S
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E.IT Wiebe Duality.

Wiebe’s duality results were originally given in in [WIE]. Proofs are also given in
[SS| and [KKD], using determinants, their expansions, and Cramer’s Rule.

For the convenience of the reader I give a more conceptual proof here in terms of
free resolutions, Koszul complexes, etc. The basis is the following folk Theorem,
much in the vein of the classical paper [BAS], albeit without the use of injective
resolutions.

E.II.1 Theorem. Let I,.J be perfect ideals in the ring R, both of homological
codimension (depth) p (p = profondeur). Then:

a) Homg(R/I,R/J) ~ Homg(Ext%(R/J,R), Ext",(R/I, R))
b) R/J ~ Exth(Ext%(R/.J), R)
c¢) The exact annihilator of Ext%,(R/J, R) is J.

Proof:

a) Let F. and G. be projective resolutions of R/I and R/.J, respectively. Consider
a mapping
¢:R/I - R/J
By elementary Homological Algebra, ¢ may be lifted to a mapping of the
resolution F. to the resolution G.. It is unique modulo homotopy. Applying
the functor * = Hompg(+, R) and taking cohomology, we get a uniquely defined
mapping
¢ : Exth(R/J,R) — Exth(R/I, R)
The mapping
pre—¢
is linear by uniqueness.

Now a well-known result states that the dualized complexes Hom(F., R) and

Hom(G., R) are acyclic except in dimension zero, hence affording projective

resolutions of the modules Ext%,(R/I, R) and Ext%,(R/.J, R).

By the same argument as above, any mapping ¢ from the latter module to the
former induces a mapping v(¢) = ¢ : R/I — R/.J. By homotopy uniquness
arguments, p and v are inverses of one another, proving statement a).

b) Again, the dual resolution G.* yields a projective resolution of Exth(R/.J, R).
Dualizing once more we retrieve the original complex G., whence the result.

¢) The isomorphism just established immediately shows that the annihilator .J, of
R/J, contains that of Ext%(R/.J, R). The reverse inclusion is obvious, whence
the result.

In the following subsections we record a number of corollaries of the above Theorem.
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E.I1.2 First special case.

Let R,m,k = R/m be a regular local ring, and I an m -primary ideal. Using the
Koszul resolution of R/m one proves

R/m ~ Ext%(R/m, R)

As is well known the number of irreducible components of I equals the socle
dimension of R/I, which in turn is the k-vector space dimension of the module

Homp(R/m, R/I)
By the result above, this module is isomorphic to
Hom(Ext%(R/I, R),Ext,(R/m, R)) ~ Hom(Ext%,(R/I, R), R/m)

the dimension of which is the number of generators of the module Ext®(R/I, R).
So, of the two, the latter is cyclic if and only if the former has socle dimension 1,
i.e., if and only if I is irreducible. Similarly, reversing roles, we see that

Ext%(R/I, R)
has socle dimension 1 (since R/I is cyclic), i.e., its zero submodule is irreducible.

E.I1.3 Second special case.

Conditions as in the Theorem. Suppose more precisely that the two ideals I,.J
are generated by quasi-regular sequences of length p. "Quasi-regular" means that
the corresponding Koszul complex is acyclic in positive dimensions. I and .J are
then obviously perfect.

It is well-known, and easy to prove, that
Homp(R/I,R/J) ~ (J:1)/J
By the Theorem, this is isomorphic to
Hom(Ext?,(R/J, R),Ext?(R/I,R)) ~ Hom(R/J,R/I) ~ (I : J)/I

hence

(J:I)/J~(I:0)/I

In case I C J we get
R/J~(I:J)/1
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E.I1.4 Third special case. Wiebe’s Results

Again, I,.J are assumed to be generated by quasi-regular sequences and I C J.
Letting I denote a row-matrix consisting of generators of the ideal I we may write
this inclusion in matrix form as

I=JA
where A is a p/p-matrix with elements in R.

Now the module Hompg(R/I,R/.J) is generated by the canonical projection 7 :
R/I — R/J. In the Koszul complexes associated with the generating systems
above we get a mapping ¢ : R — RP given by the matrix A. The lifting may
be chosen as the exterior powers of ¥, so, at the far end, we get the mapping
APRP — APRP given by muliplication by det A. From this we see that

(I:J)/I~Hom(Exth(R/J,R),Extl,(R/I,R)) ~detA-R/I
which is isomorphic to
(J:I)/J~R/J
SO
I:J=(detA)+1
which is the first of Wiebe’s results.
We also see that the module

Hom(R/J,R/I) ~ Hom(Exth (R/.J, R),Ext(R/I, R))

is generated by (multiplication by) det A.
So, finally,

I:det A~ Ann(Hom(R/J,R/I)) ~ Ann(Hom(R/I,R/J)) ~ Ann(R/J) = J
which is the second Wiebe Theorem.

E.IL.5 Fourth special case.

The following case will be used in the section on residues, and (hopefully) in the
forth-coming paper on fundamental classes. It is given as an exercise in [EIS].

Let R be a local Noetherian ring. Suppose I C J, I generated by a quasi-regular
sequence with p elements, J perfect of homological (co)dimension p. Let G. be a
free resolution of the module R/.J, of length p. Using the Koszul resolution of R/I,

the projection = : R/I — R/.J lifts to a comparison mapping, the p:th component
of which is
vp: R~ NPR? — G,

This mapping can be represented by a column matrix C.

Again, dualizing, and taking cohomology, we derive a mapping

# : BExt?(R/.J.R) — Ext?(R/I,R) ~ R/I
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induced by the dual mapping

" G, — NPRP

Since this mapping is described by the row matrix C* (t = transpose) the image of
@ is the submodule of R/I generated by the elements of the matrix C.

The kernel of ¢ is the image of
Exth ' (J/I, R)

in the long exact sequence of Ext:s. This module is zero, since the annihilator of
J/I contains a regular sequence of lenght at least p. So ¢ is injective. Now, by

the Theorem, the exact annihilator of Ext%(R/.J, R) is .J, so the image of ¢ equals
(I:J)/1.

That is, the elements of the column matrix C' generate I : J, modulo 1.
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E.ITI Regular Prime Bases

E.III.1 Their existence.

This section elaborates on the results in [ZS], page 310 fI. cf. also the book of
Grobner, [GRO].

Consider the polynomial ring A = k[zy,29,...,2,] and a prime ideal p C A.

Denote by R the quotient ring A/p. Let 71,72 ... 7, denote the residue classes of
X1, X5, ... X,, modulo p. Let d denote the Krull dimension of R.

By a linear change of coordinates we may assume that 7 = 7,7,...,74 are
algebraically independent and that the classes 74, = T441,..., 7, are integral over
the ring

k[t := k[, 79, ...,T}]

So we may write

R =Fk[r', 7" = k[r'][7"]

We let K denote the quotient field

''n

K = By = (oo 7)o ol = LI

where the field L is purely transcendental over k, and K is algebraic over L.

Consider the polynomial ring

L[xfi’_H, o2

n

The extension of p to this ring is zero-dimensional, hence generated by n — d
elements fgy1,..., fn which may be chosen to lie in A.

We see that the extension pAp is generated by the f;, so the local ring Ay, is regular.
We say then that the f; form a regular prime basis for the prime ideal p. Choosing
some suitable element g belonging to the remaining associated prime ideals of the

ideal (f) = (fat1,---, fn), we may write p = (f) : g.

The following isomorphism follows readily from the above considerations:

K~ Llzag1, .-y wnl/(fag1y- oy [n)

E.IT1.2 Idempotents

We now regard the prime basis elements f; as elements f;(7',2") in the ring

]([x//] ~ k(T’)[T”] ®k(r’) k(T’)[Q?”]
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By simple flatness arguments they still form a quasi-regular sequence in this ring.
We always think of them as

fi(T/7x//) _ 0 — fi(T/7x//) _ fi(T/77_//)

Obviously
K[z"]/(f(r",2")) = k(=)["] @uirry B(7)[7"]

is reduced, since K /k(7') is separable.

From this we see, in obvious notation, that

(f(r',2")) = (2" — ") N other maximal ideals in K[z"]
and, by the Chinese Remainder Theorem,

K[2")/(f(r',2")) ~ K[2"]/(2" — ")®??? ~ K§?7??

We look for the idempotents belonging to this decomposition.

"

Let us use the same notation (f(r',2")) and ((2” — ")) for the column matrices

made up by the respective generating systems. We then have

(f(T/,:l?”)) — Mo(x//77_//)((x// _ 7_//))

where My is a square matrix with elements in K[z"] = k(7')[7"][z"]. Writing

Dqo(z",7") for det My we have, by Wiebe’s Theorem,
(f(T/7$//)) _DO(:E”,T”) — (x// _ 7_//)

(f(T/7$//)) . (x// _ 7_//) — DO(.'E//,TH)

proving that Do(z",7") ¢ (f)K[2"], s0o 0 # Do(r",7") in R.

By a simple division argument we may write:
_DO(:E”, 7_//) _ J — _DO(:E”, 7_//) _ _1)0(7_//7 7_//) — P(:E//7 7_//)((:E// _ 7_//))
since the left member vanishes on substituting " — 7”. P is a row matrix. So

=(1—€n)+ €o

Since the terms in the right member annihilate one another modulo (f(7', 2")) their
classes modulo (f) yield the desired idempotents.
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E.II1.3 Traces

From the above considerations we may put together the following commutative
diagram
KE")/(f ") e K[a")/(a" — =)
3 XS
k(r)2"/(f(,2") = K
Here the top horizontal arrow maps 1 to an idempotent ey displaying the right

member as a direct summand of the left.

The left vertical mapping is constructed from the trace mapping
Trpry : K = k(") (7") = k(7)

and the right vertical mapping is the mapping induced by the trace mapping. It is
an isomorphism.

By the commutativity of the diagram, and the isomorphism just noted, we see that

Let us write

Here we may assume the m;, m} linearly independent over k(r'), We may assume
that my equals 1 and that the other m; have no constant term We then get

T(1) =1

and

T(other m;:s) =0

By the commutativity of the diagram, and the isomorphism in the right-hand part
we see:

T o Eo(m(T//)DO(:E”,TH)) — m(x//)

From this we immediately see that the m;(7") generate K over k(7') and that the

sequences m;(t"), m}

Z(T”) are dual bases for the bilinear form

B(m,n)=T(m-n)
from K to k(7').

E.IT1.4 An extension

More generally, let Q(f) denote an (f)—primary ideal in A/p generated by certain
expressions in the f;(7',2"). By abuse of notation we use the same symbol for the
extension to the ring K[z"]. Let ¢(2"” — 7") denote the primary component of this

ideal, belonging to the maximal ideal (2 — 7).
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Again we have a commutative diagram:

K[x”]/i(Q(f)) = l&’[x”]/(qix”—T”))
EEO"/QU) —  K'A/Q(f)

Here again the top arrow maps 1 to an idempotent e, and the left vertical arrow is
constructed from the trace mapping K — k(7'). K’ ~ K denotes a Cohen field of
E()[z"]/(Q(f)), and the bottom horizontal row comes from re-writing everything
in the form p(f) € K'[f], using analytic independence of the f;. The right vertical
arrow is the composition of the three.

E.IIL.5 Theorem. The composition described above is a ring isomorphism map-
ping the subfield K C K[2"]/(q(2" — ")) isomorphically onto the Cohen field
K’

Proof:

Let K be a normal closure of the separable extension K/k(7'). Let G denote the

Galois group of K /k(r'). For any element
eh € K[z"]/(Q(f)), he€ Klz]/(q(=" —7")),

we may write, in obvious notation,

Tr(eh) = Z eI h9

geG

Note that the €’ are orthogonal idempotents in K[z"]/(Q(f)). From this we easily
see

Tr(ehk) = e'h9k? = (D e"h9) (> ek?) = Tr(eh) Tr(ek)
9 9 9
From this description it is clear that Troe is injective. However, it is clear by the
splitting over K that both rings have the same dimension over k(7'), namely 1/g
times the dimension of K[z"]/(Q(f)), g = [K : k(7")]. So our mapping is surjective
as well.

This isomorphism is to be conceived of as a linearization of the scheme belonging to
Q(f). It is equivalent to a one point scheme over the function field of the underlying
variety.

The inverse isomorphism K'[f]/(Q(f)) — K[z"]/(q(z" — ")) is given by formal

Taylor expansions in powers of the (27 — 7/’). This is clear since Tr(eh) = eh +

Z ¢/ h? maps back to h and the remaining terms belong to ¢(z” — 7).

g#1

By the isomorphism just established, modulo any higher p-primary ideal, the ideal
q(z" — 7") is a complete intersection if Q'(f) is. We will need this observation in

E.IX.7.
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E.I11.6 Example: Let A = k[X,Y] and f(X,Y) = X? + Y? — 1. Let us study the

ring A/(f?). Welet u =Y + (f?) be the parameter variable, and 7 = X + (f*) the
fiber variable. The idempotent € is then

1 5 9 1 x x o
e= Sl + T — (et P - = 3+ o - f#) = o (mod f)

as is easily checked. It may be constructed from the formal partial fractions

decomposition
, 1 1 1 T 1 1 T "
— = =l - + + ]
2 (e—=1)(x+71)? 43 (z—1)?2 ax—7 ax+47 (v+7)
We have
x -
Trrc ki (e7) = = + 22 — 1)f -

and it is easy to check that

fE)=0 (mod (f*));  F==z (mod(f))

So we find the Cohen field
K’ = k()7

In section IX. we will determine the idempotent for this decomposition as a "pre-
residue'. For the time being we content ourselves with the following

E.ITL.7 Theorem. Consider k(7")[z"]/(Q(f)) as a subring of K[2"]/(Q(f)). Let
K" = ()] = MK/ (F(. X")
be a Cohen subfield of the first ring. Then the idempotent € is given by

1)0(7_//7 %’//)
J

with J = Do(7",7")

Proof: We need only prove that e (1 —¢€) = 0 and that e — 1 € (2" — 7”). The
proof of these facts is formally the same as that in I11.2., just keep in mind that all

f(=", 7"y =01
For instance, the idempotent in E.ITL.6. can be written (1 + ¥)/27.

E.ITI.8 A special choice of prime basis.

Some of our later computations will be facilitated by a more convenient choice of
prime basis. For a given square matrix M, let M™* denote the adjugate or cofactor
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matrix of M, whose element in position (j,7) is the cofactor of the position (7, ) in

M.
Let us put

(g(r",2")) := Mg (", 2")(f(',2"))
(¢9) and (f) again denoting column matrices.

Since the determinant of My is a power of the determinant of My, which does not

belong to p, we see that ggy1, ..., ¢y form another prime basis of p. Taking partial
1"

i, at (7', 7") (i.e., reducing modulo p), we get:

derivatives, w.r.t. x
99

2 ) = My (7 S 7
T’
J

"
axj

since the other term produced by the product rule vanishes at p. Now the product
column in the right member is the j:th column of the matrix Mg Mo (7", 7") which
18

with the 1 in the jth row, and all other elements equal to zero.

So the g; satisfy
Jgi
ox"!

J

(7_/7 7_//) — 6‘1‘]‘1)(7_//7 7_//)

Stated differently, the linear part of the formal Taylor expansion of g;, at the generic

point (7', 7"), consists of the single term D(7", T//)(x;/ - T;/)'
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E.IV Generic and True Exponentials.

E.IV.1 Their definition.

Given a Noetherian normalization
R=Afp =K', w") K = (A/p)p = K]

the generic exponentials belonging to the prime ideal p may be defined quite
formally as symbols

ot

Gz, 1) = f(T,x”)eTI$I+T g
where f(z",7) € K[2"]. Here, e.g., 7'z’ means 7{x1 + mox0 + ... + Tj24.
The ring A acts on exponentials by differentiation:

h(z)* G(x,7) = h(0/0x)G(x,T)

Note that the parameter variables act like multiplication:

1t 1t

.’17; " f(x//77_)er'x'+r z Ti/f(x//77_)er'x'+r T
whereas the action of the fiber variables is given, on the rational f-factor, by:

af

"
axj

fa", ) = + 7 f(2", )

True exponentials are defined by viewing the exponentials as formal power series,
and then taking traces over the field k(r'):

't

Tri/u(r Gz, 7) = g(r!, 2" )e™ "
The action of A is the same. True exponentials form a module isomorphic to the
module of generic exponentials, by the non-degeneracy of the trace form.

They may be viewed as power series

(7', 2") € k(r)[[="]]

multiplied by the symbol

more precisely, those among them that are annihilated by some power of p. The
word "true'" refers, e.g., to the fact that the parameter variables do parametrize

them.
True exponentials with
g(r",2") € k[=[[2"]]
may be called regular. We will use the same term for the corresponding G(z, T)e

T

True exponentials may be viewed as (exponential) generating functions for the trace
form.
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E.IV.2 Inverse polynomials

Exponentials may often conveniently be replaced by their formal "Laplace trans-
forms":

1 . 1 1 1 . 1
7//) EI&[ ,...,ﬁ]—}- = A[ﬁ]' i:d—HxU "

" "o n _ _ _
T Ty — Tgyq A T T ; T

F(

where the plus sign signifies that every element includes all the n — d fractions at
least once.

The isomorphism is given by

I!

T N
(") e™ +— (2 — 7y T+(D)

where I = (ig41,...,0n) is a multi-index, (1) :=(1,1,...,1), and I'! = II,;1;!

In order to define an A-action compatible with this assignment it is convenient
(here and later) to extend A:

A = k[r'][2"] € k(=")[7"][2"] = K[2"]

Now any element f(7',2"”) € A may be viewed as an element of K[z"], so we may
use a formal Taylor expansion "at (7', 7")", replacing 2" by (2" — ") + 7, thus

re-writing f as a K-linear combination of monomials (2" — T//)J. We then define

1 1
(x// _ 7.//)[—}-(1) = (x// _ 7.//)I—J—}-(l)

(x// . 7_//)J .

if I > .J, 0 otherwise. We then extend linearly.

It is clear that this action turns the above assignment into an isomorphism of A-
modules.

Of course, these inverse polynomials (and power series) may be expanded in power

series involving negative powers of the 2", with coefficients in K. It is essential to
check that the action just defined is consistent with the usual action of polynomials
on inverse power series as defined, e.g., in [NOR], i.e., the same as above, but with

all /" = 0.

The concluding Lemma below provides an essential step in our first determination

of E(A/p).

Let us look at the module
HOIIlk[T/] (A, I()

A = k[7'][z"] acts in the usual manner:

a- p(b) := p(ab)
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If a = f(2')g(2") this means

We have an almost obvious isomorphism
Homy,1(A4, K) ~ Homy (k[2"], K)

where the action of A on the right member is defined by the formula (*) above.

Now, to every element ¢ in Homy(k[z"], K) we may associate an inverse power

p(m)
Z m(z')Iz!

the sum running over all monomials m(z") € k[z"]. It is easy to see that the A-

series

action on either member commutes with this assignment. Summing up we have the
following

E.IV.3 Lemma.

Homy1(A4, K) ~ Homy (k[2"], K) ~ K[[—]]+ ~ K]
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E.V de Rham Cohomology and Traces of Differential Forms.

E.V.1 Traces of differential forms
The standard reference for the subject of this and the next subsection is [KKD].

Deviating somewhat from our standard notation, we place ourselves in the following
situation:

ECcRCS

are Noetherian rings, finitely generated as k—algebras. S is a module-finite R-
algebra, projective as an R-module. We denote by

Qs
the module of differentials of S over k. We also introduce the notation
4l = AN Qs

We assume further that

Q%/k =S5 ®r QdR/k

for all d. The classical situation is that where R and S are fields, and S is an
algebraic separable extension of R.

It is then easy to define the R-trace of a differential form € Qé/k. It is:

TrS/R(gdfl JANPIAVAN dfd) = (TrS/Rg)dfl JANPIAVAN dfd

where f1,...,fqs € R and where the trace of ¢ € S is defined as the trace of the
R-linear mapping "multiplication by ¢".

It is easy to prove that the above defini tion is independent of all choices involved.

Furthermore, for ¢ € S, we may write dg = Zgidri, r; € R,¥1 whence

7

Te(dg Adfs A Adfa) =Y Tr(gi)dri Adfy A... A dfa =

Tr(dg) Adfy A ... Adfy

The proof of the following lemma is included for lack of a suitable reference:

E.V.2 Lemma. The trace defined in the situation above commutes with exterior
differentiation
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Proof: By localization arguments we may assume that S/R is free. We need only
consider a "monomial"

gw = gdfy - ...-dfs;  fi € R,Vi
Now
Tr(d(gw)) = Tr(dg A w) = Tr(dg) A w
and
d(Trgw) =d(Trg) Nw
so it is enough to prove the Lemma for a 0-form ¢ € S.

Let e denote a row matrix whose components are some basis of S/R. We may
write

g
d

1)
I
)

M
N

I
I
I}

where M is a matrix of elements in R and N is a matrix of differentials. By
definition,

Trg=TrMEeER

and

d(Trg) = d(Tr M) = Tr(dM)
where the differential of a matrix is defined element-wise. Differentiating the
equation ge = e M, we get

dge +gde = deM + ed M

1.e.

dge +geN =deM + edM

1.e.

dge + e MN = e N M + edM
Taking traces of both members, and using Tr(NV M) = Tr(MAN) (note that M

contains no differentials), we get

Tr(dg) = Te(dM) =dTr M =dTrg

E.V.3 The de Rham complex

We introduce, momentarily, indeterminates Ty,...,T,, and the notation k[T] =
k[Ty,...,T,] for another copy of the polynomial ring A. We also introduce formal

exponentials f(T,z)e™™ = f(Ty,....,Tp,x1,...2n)e "1 F T where f(T,x) is
an element of k[T, z]

The action of k[T] is by differentiation w.r.t. to the T variables, that of k[z] is
differentiation w.r.t to the x. These actions commute. We may replace exponentials
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by formal Laplace transforms € K[1/(2" — T")]4; the z then act by multiplication
(almost) and the T by differentiation.

We may form the module M consisting of formal exponentials and the module
¢/ = M @ur) Yy = M & N Uy

We turn these modules into a complex by exterior differentiation with respect to
the T—variables:
d:Cl— ¢t

d(fdT) = df A dT

We next introduce the differential ideal I of the exterior algebra €2, generated by
all f,df; f € p C k[T] and form the complex

C.=(C./IC.),

with operations induced by those of the original complex. Details of this construc-
tion are given in [KKD], p.27.{f.

We introduce the notation 7, dr for the residueclasses of the T, dT. The operation

induced by the differentiation 0/0T; will be denoted by 0/07;.

We then have ‘ ‘
CF = M@ N Qap) i

where M’ denotes the module of formal exponentials f(7,z)e™ with obvious ac-

tions. Here f(r,2) € K[z], K still denoting the quotient field (A/p)p. Note that
all variables x, not just the fiber variables 2", enter this expression. The elements

of €7 look like this:
flryx)e™dr

Exterior differention in this quotient complex may be performed as ususal:

d(f(r,z)e™dr) =d(f(r,x)e™ Adr)

of(r,x
= Z[ifgé ) ey Ndr] + Z[xjf(r, x)e™dr; A dr]
=1

i=1

unambiguously. We get the "right" differentials, thanks to the chain rule, of course.

If fg41,..., fn are a prime basis for p, then it is well-known that

dfas1, ..., dfy

are linearly independent, modulo p, over the field K. From this we immediately
see that

Cl=0,7>d
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Actually, referring to a Noetherian normalization A/p = k[r',#"], the "fiber dif-

ferentials" dr” are K-linear combinations of the dr’, which in turn are linearly
independent.

Along with this complex we will have to consider a "traced de Rham complex", C..
We refer to a Noetherian normalization A/p = k[r',7"]. Again we may view the
expression

!

f(ryx)e™dr = f(T',t”)eTleeT““;I dr e ¢/

as a formal power series. We also may assume that d7 involves only the parameter
variables 7'

Taking term-wise traces (from K to k(7')) we obtain expressions
g(T’,x)eTI“:IdT'
which are annihilated by some power of p. They form a module C? isomorphic

to C7. Since the trace commutes with exterior differentiation, the complex C. is
isomorphic to C'., hence has the same cohomology.
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E.VI First Determination of E(A/p)

Our first determination of the injective envelope of the module A/p will depend on
a normalization. The next section offers an invariant description.

We start off with the following Lemma, the proof of which may be found, e.g., in
[HAR], p. 213:

E.VI.1 Lemma. Let E be an injective A-module, A Noetherian. Let p € A be a
prime ideal. Let Eq = I'p(E) be the the submodule of E consisting of elements
annihilated by some power of p. Then FEy is itself an injective A-module.

Actually, p may be replaced by any ideal.

We wish to prove that the module of generic exponentials, or, equivalently, the
module of inverse polynomials

is an (the) injective envelope of the A-module A/p. There are two things to prove:
that Fy is an essential extension of K, and that Fy is injective. Our next lemma
takes care of the first property.

E.VI.2 Lemma. The module
1

)

" — T

K|

of inverse polynomials is an essential extension of K. Also, each element is
annihilated by some power of the prime ideal p.

Proof: Consider any element

1 1 ,
P = XI:GI("”" —r €K

The multi-indices involved may be equipped with an obvious partial order. Let
J + (1) be maximal with respect to this order. Let git1,¢d+2,- .. gn be the special
prime basis introduced in I11.7. Let ¢ := Hkgi"“. Using a formal Taylor expansion
"at 7", and the fact that

9

agi
oz"

J

(', 7") = 8ij - D", 7")

one easily sees that
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For the last statement, note that the g; generate the extension of the prime ideal
p to the localization A,. Since the inverse polynomials have coefficients in K it
is enough to prove that a large enough power ¢* of the ideal (g;) annihilates the
element F. But this is easy; simply take £ so large that any monomial in the g;
has one exponent greater than the corresponding one in I.

As a preliminary step towards the second property we exhibit the inverse polyno-
mials as submodule of a much larger injective module:

E.VI.3 Lemma. The module

1

oM — 7.//]]‘f‘

K|

of inverse power series is an injective A-module

Proof: We first note the well-known fact that the quotient field k(7') is an injective

module over the ring k[7']. So is K, being a finite-dimensional vector space over
k(7).
By a standard change-of-rings argument, cf. any standard text on Homological

Algebra or the book [VAS], the module
HOIIlk[T/] (A, I()

is then an injective A-module. However, in IV.3. we noted the isomorphism
Homy (4, K) ~ K[[———

We finally turn to the proof of the main result of this section. Note that we are
proving the structure of injective envelopes without presupposing their existence.
With a judicious choice of definitions and categories we might even do away with
the reliance on Zorn’s lemma, and similar black magic, altogether!

E.VI.4 Theorem. The module of inverse polynomials

1

]{[x// _ 7—//]+

is an injective envelope of the A-module A/p

Proof: By the lemma above all we need to do is exhibit this module as a direct
summand of the p-primary part Eg of the module of inverse power series. Let
(g) be the prime basis discussed previously (Section II1.7.). Obviously, Ey is the
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increasing union of the submodules M}, annihilated by (g)k and it is enough to show

that the submodule (of M}, ) consisting of inverse polynomials is a direct summand

of M.
Again we use the embedding
A= k)" € K1) = kel
and the obvious action of the latter ring on M} described in IV.2. (this is actually

a substitute for completing the local ring Ay ). If we can exhibit the module of

inverse polynomials as a K[2"]-direct summand of M}, we are done.

However, by the discussion in II1.2. we may write
(g(7',2")) = (2" — ") N other maximal ideals of K[z"]
From this, and the special choice of the ¢;, we see:
() = (" )T

where [ is the intersection of primary ideals belonging to those other maximal
ideals.

By the Chinese Remainder Theorem, M} is then the direct sum of the submodule
killed by ((z” — 7"))* and that killed by I. The first, however, is obviously the

submodule of inverse polynomials in the 2" — 7", 1

Remark: It can be proved that Eq is actually the direct sum of ¢ copies of E(A/p),
where g = [K : k(7')], the degree of the variety V(p) belonging to the prime ideal
p. On taking traces, with respect to k(7'), all of them are mapped isomorphically
onto the p-primary part of the injective module
Homk[rl](A7k(7J)) ~ Homk(rl)(k[rl,x"],k(T’)) ~
~ Homi (H{e"], k(7)) = K[ 1)+

x
which may be identified with the module of true exponentials.

Remark: In TI1.4. we noted the K-isomorphism

K[fI/(Q'(f)) ~ K[z"]/(q(=" — "))
where (Q'(f)) and (¢(2" — 7)) are primary ideals.

By cofinality we must have
lim Hom i (K[£]/(f)?, K) ~ lim Hom g (K [2" — 7]/ ((=" — 7))V, K)
— —

1.e.

which gives us another description of the injective envelope E(A/p).

Actually, if (¢) C p is any system of parameters of A, one may prove, much in the
same manner, that

mwm:uﬂwwwgu
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E.VII Second Determination of F(A/p)

In this section we prove the following theorem, thus finally giving an invariant
description of injective envelopes, i.e., one independent of the normalization.

E.VIL.1 Theorem. The injective envelope E(A/p) is isomorphic to the highest
cohomology module of the de Rham complex described in V.3.

The proof will be given in several steps. The easy part is provided by the following
Lemma.

E.VIL.2 Lemma. Let p be a d-dimensional prime ideal of A. Let A = k[r',7"]

be a Noetherian normalization. Then every cohomology class of Hd(C.) contains
an element of the form

g(r, 2" )e " dr’

i.e., one involving the fiber variables " only.

Proof: As C%T! = 0 any element of C'? is a cocycle. Consider an element of the
following form:

w= (x;)kf(r,x',x”)emdrll Ao o ANdT)

Here we assume that x; is missing from f. Obviously any element of C'% is a K-

linear combination of elements of this kind. It is enough to prove that this form
i
degree in the remaining z’. A simple induction will do the rest.

Let dT[/j] denote the form

is cohomologous to some other form of lower degree in z’;, and at most the same

(=1)Tdr| A ... (;l\T]’ oA dT)
(where the hat means "omit"), and d7’ = dr{ A ... A dr) Then
d[(x()k_lf(T/,x’,x”)emdr[/ ] —

J J]

(x})kf(rl, x x")emdrl + (x;)k_lemdf(rl, x’, x”) A dT[/j]

The first term is the one under consideration. The second term contains x; to a

lower degree. Differention of f, w.r.t. to the 7-variables, will not affect the degrees
of the remaining z:s. The differential factor arising this way may be re-arranged
into one containing only the dr':s, using the dependence of the dr” on the dr’. 1

Next we have to show that the class of any

f(r,2")e™dr’
is non-zero. This will establish the isomorphism claimed in the theorem. We will
prove the case p = 0 in detail, and then sketch the reduction from the general case

to this case. Note that in this case all the variables z; are parameter variables. So
what we need is the following:
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E.VIL.3 Lemma. Suppose p = 0, the zero-ideal in A. Suppose further

d
ngi(T, x)emdr[’i] = f(r)e™™dr’
=1

Then f(r) = 0.

Proof: We are assuming

S b aig) = fir)

?

Our proof will proceed by induction on the highest degree of the ¢;, in the z. We
donte that degree by m. The case where all g; are independent of the z; is obvious.

We introduce the following notation. (g;) is a column matrix, with the ¢;,¢ = 1,...d
as elements. We may write

(9:) = Z?k

where the k—term is a column containing the k—degree parts of the ¢g;. We introduce

the two operators
D: Dig:) =Y gimidr]

0g;

It is easy to check the properties
§?=D*=dD+Dé=0; d=86+D

We may think of D as a Koszul differential and § as belonging to an “ordinary”
deRham complex, “without exponential factors”.

Our assumption may now be written

Dgn, =0
ng—l + 5§m =0
ng—2 + 5§m—1 =0

5?0:](

From the first equation, and the exactness of an appropriate Koszul complex we
find a matrix h,;,_q satisfying

I9m = Dﬁm—l
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Let us set _
glm—l =0m—1 — Shm—1

By the above considerations we get
ng—l =0
D G2 + 0Gm—1 =0

6go = f

which is of the same form as the previous set of identitites, but of degree m — 1
instead of m. So induction on the total degree m yields the desired conclusion
f=01

Remark: From the computations of the proof it is easy to see that the next highest
cohomology is zero. We only needed the exactness of a Koszul complex in dimension
1, and the commutativity of derivations. By the same technique we could prove
that our deRham complex is exact in all dimensions except the highest.

So now we have proved the isomorphism of the theorem for the n-dimensional zero
ideal. Let us now deal briefly with the general situation, i.e., that of an arbitrary
d-dimensional prime ideal p.

Suppose we have

d[z gi(T,x)ede[’i]] — f(T,.’l?//)e”EdT/

where the right member involves the fiber variables 2" only. We must prove that
f=0.

Passing to the isomorphic "traced" de Rham complex, and noting that tracing
commutes with exterior differentiation, we get something like this:

d[z gi(T” x)erlxldT[/i]] = f(le Sl?”)er’x'drl

. . . . . . . . . /
Since exterior differentiation in this case involves only the parameter variables 7
we may separate this equation into its components according to various momomials

in the z';

gi(r,z) = Zﬁi,](Tl,J?/)(xﬁ)Ia
il
f(T/,:l?H) — Zf[(T/)(J?//)I,
I
dZ§i7I(T’,x’)dT[’i] = fI(T’)dT’

We are then back in the previous situation (over the polynomial ring k[r{,...,7;].)

So, in f = Z fI(T’)(x”)I we may conclude that each component, hence all of f,
T

hence f itself, equals zero.

This concludes the proof of the Theorem.
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E.VIII Noetherian Operators. Reciprocity. Duality.

To a generic exponential

f(T, 7 /) A Zgl z 1' '+

we may associate a Noetherian operator

a // Zg’ a //)

where the m; are various monomials.

These are viewed as acting "at (7/,7")". i.e. first they act, then everything is

reduced modulo p (substitute # — 7). Noetherian operators are k(7')-linear.

If

"o a
f(T,x”)eTx—H- x Hf(ﬂ@)
then
af .. d
ax// € H [f( /7 ax//) ;/]

the commutator of a differential operator and a multiplication..

By Taylor’s Formula,

0
[f(T7 w)g( /7x//)]x=r =0
<~
0
(7" 5 + 1) f(m 2= = 0
<~
S Fr, ") s = 0

It is enough to check monomials.

From this one easily concludes

E.VIIIL.1 Theorem. "Reciprocity Theorem". Let I = (¢;) be a p-primary ideal.
Then the ideal I, acting in the usual manner, kills the generic exponential

f(r,2")e™ if and only the Noetherian operator f(r ), along with all its

0
G 9

0
e

commutators [f(T 2’ 2")], kills all the q; at the generic point (7', 7")..
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Proof: First of all, for any ¢ = ¢;

is the same as

ie., f kills the ideal q (at p if and only if f, and all its commutators, kill the
generators q;.

From the above equivalences, and the correspondence "derivative <> commutator",
we see that this happens if and only if the ¢; kill the exponential f(7,z")e™, along
with all its derivatives, at 2" = 0. However, by Taylor’s Formula, this is the same
thing as the the ¢;, hence also the ideal q, killing f(,2")e™ altogether.

Finding those Noetherian operators that characterize I is therefore the same as
finding the generic exponential solutions f(7,2")e™ of the system

0 |
G5 ) (F(r " )em™) = 0,V

These may also be characterized as the module
Hom(A/I, E(A/p))

denoted by (A/I)*.

Proving that these exponential solutions characterize I amounts to proving that
the canonical mapping

Al — (A/ )™
is injective.. i.e, to each 0 # a € A/I there exists a mapping ¢ € (A/I)*, with
p(a) # 0.

The proof of this proceeds exactly as the corresponding proof in [MAS], p. 148, the
first step in Matlis Duality.

Consider a as an element of the local ring B = (A/I)p. Then the composition
Ba~ B/ Ann a — B/Bp = (A/p)p — E(A/p)
is non-zero since the second mapping is surjective and the last injective. By the

definition of injective modules, this mapping extends to a mapping B — E(A/p).

Alternatively one proceeds by induction on the p-length of A/I, the case A/p being
obvious. Suppose I C J C p, with (J/I)p, ~ (A/p)p, hence A/.J of p-length one
less than A/I.
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Consider the commutative diagram

0o - Ap — A/ — A/ —= 0

i i i
0 = (A/p)" — (A/D)* = (A/))* = 0

Here both lines are exact, by exactness of the x functor. The first vertical arrow is
obviously injective, the rightmost arrow is injective by the induction assumption.
From this it follows, by elementary Homological Algebra, that the middle vertical
arrow is injective.

Of course, on localizing at p all injections turn into isomorphisms, and the p-length

of (A/I); equals that of (A/I)p ete.
We record the following Duality Theorem:

E.VIIL.2 Theorem. Let m;(t',2"), 7 =1,2,...m be a K-basis of

RrOE/(QU (', 2"))) ~ K[2"]/(q(2" —7"))

Then there are Noetherian operators

and corresponding exponentials

such that

or, equivalently,

0
i 2y m (. a)e)mo =
Proof: . This is an immediate consequence of our previous identifications and

ordinary zero-dimensional Matlis Duality over the field K. I

Remark: On localizing, and completing the ring A, at p, it turns out that the
Noetherian operators are not only linear over k(7'), but linear over K as well,
where (by abuse of notation) K denotes the Cohen field (field of representatives)

containing k(7').

S
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E.IX Residues and Noetherian Operators (Sketch).

E.IX.1 First discussion, relying on a normalization

Here we sketch the connection between Noetherian operators and residues, quite
informally. The reader will have to connect this further with his/her favorite

residue. See, e.g., [BEA], [KKD], [KRD], [KCM], [HOP], [SS].

We remind the reader that we ignore all questions of regularity, i.e., we do not care
whether our constructions land in a certain ring or some ring of fractions of it. We
would need fundamental classes for these questions. The ring A may therefore often
conveniently be replaced by its localization S = Ap.

In section IV.4. (Remark) above we noted the A-isomorphism between two descrip-
tions of E(A/p):

1
K[/l ~ Ky

where the f; € p are a regular prime basis. The left member is an A-module by its
construction as direct limit of Hom modules; actually it is even easier to describe

the action of A\p = K|[[f]] (Cohen Structure Theorem; easily deduced, in this special

case, from II1.5.)

Recall that inverse polynomials are conceived of as certain linear forms from a
polynomial ring to the field K

Appending differential symbols we may normalize thus:

df 1 dr’
K[1/A1dT' N ——— K
x[ /f] H?:d+1fj — I\ [x// 4 H(x” _ 7.//)
with
df df dr’
dT' N = = dT'
/\ f /\ H]f] - H(x// _ 7—//)

both members signifying linear forms sending 1 to 1, and monomials of positive
degree to zero.

Here the differential in the left member is viewed as belonging to
%/k’ R:k[Tl,...,Tn]p

and that of the right member to
QZ[r’]/k

The pre-residue is defined as the above isomorphism followed by taking the coeffi-
cient of
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yielding a K-linear mapping

]+ ®Qd — K

1
K[?]Jr @ Q" — K]

-
Viewing inverse polynomials as exponentials, this is the same as evaluation at
2" =0.

The Grothendieck residue follows this by the trace mapping K — k(7').

It is fairly easy to prove that any element of the following type is mapped to zero
under the pre-residue map:

adf

dT" A id41 i in
fd+1-...-fj R

9

where at least one ¢; > 2
Simply note that such a form signifies a linear form sending 1 to zero.

This means that the preresidue of any exact form of the following type:

dT" A~
Iz

d( ), IT=(1),

1S zero

Now, for any p-primary ideal ¢, there is some & such that (f)(k) C . There is then
a mapping

Exte™*(S/Sq,5) — Exte™(S/(f)M,S)

induced by the canonical projection 7 : R/(f)(k) — R/q. Tt depends on the choice
of a minimal generating system but is uniquely determined up to a unit factor (in

S =A4p.)
It may be constructed in the following manner. S = Ay is a regular local ring, of

dimension n — d. The modules A/q® S, A/(f)* ® S admit free resolutions G. and
F. of length n — d. Here F. may be chosen to be a Koszul complex, with F,,_; of
rank 1 and

Exts™"(S/(f)M.5) ~ S/(f)H*

The mapping Gp—q — F,—g4 is described by a row matrix (with elements in pS),
as explained in I1.5. and this row matrix induces an injection

Exte™(S/aS,S) = Extt™"(S/(f)*,5) ~ 5/(f)¥

mapping the first module isomorphically onto (f)(k) : qS/(f)(k).

Now it is well-known that an element of

Ext?=4(S/(f)*F S, ) @ Q" ~ Ext2(S/(H)P, Q" /(B am)
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or, more generally,

Extt™"(S/(f)'S, "/ fam)

may be represented by a residue symbol

[ f h(T)dT ]

fd41 . fin
i fi

or

T

having all the right properties.

One uses the dual of the Koszul complex belonging to (f)’ to determine the Ext-

module. It ends with 0 + $* « S"=9* The symbol corresponds to the class of
the element mapping 1 to h(T)dT.

Here h(T) € S. It may, however, also be viewed as an element of

SI(H'S = KTHT"/(f)

which we may in turn write as K[f]/(f)’, according to I11.4.-IT1.5. K is a Cohen
subfield, previously notated K'.

By this token we get mappings

]+ ®Qd — K

Ext?™(S/(f)M),5) 0 Q" - K[%p 50" s K|

oM —

We may view Extg_d(S/(fI), S), I <.J as a submodule of Extg_d(S/(fJ; S). The

mapping is the multiplication by the determinant f7=7 induced by comparison of
Koszul complexes. From this one sees that the obvious mapping

limExt3~(S/f7,5) @ Q" = K[1/f]@ Q"

is well defined. It is an isomorphism.

Now, we may view the residue symbols as differential forms with denominators, just
as in the module K[1/f]@Q" (as long as we keep fixed the order of the factors in the
denominator). Then any exact differential form (where we revert to differentiations
w.r.t. T/, T") will map to a exact form (and vice versa) on re-writing everything as

polynomials in T’, f, with coefficients in K (modulo (f)7):

ofT', T")dT' Adf | [ p(T, f)dT’ A df p(T, £)dT" A df
#1 B #1 — F)
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To see this we need only convince ourselves that elements o € K may be treated
as differential constants  (mod f7,dT"), for any I > (1) But from the polynomial
equations they satisfy  (mod f7) over k(T’) it is clear that

da =0 (mod dT', 7, f7=(Mdf).

(Of course, it is more comfortable pass to the completion A\p = K|[[f]]; the subfield

K is then differentially trivial over k(7'), and we need not reduce modulo anything.)

This fact is usually stated as the formula of exterior differentiatation:

dw dfi N\ w
e } Zk[’““--ff’““ -

d+1 d+1

In IX.3. we will apply this only to forms w of the type w = dT’ A 4. We may then
intepret the formula as both members having the same pre-residue.

E.IX.2 Example:

Just to give a hint of what is involved in IX.1. we give this tiny example Let

A =kl[z,y] = k[T,U] and f = 2* + y* — 1. Let us look at

,,d{TdU} B {deU} B [Tdde] B {(T—f/QT)dUdf
f f f? f?

Here, T=T- f/2T =T (mod f), and f(f) =0 (mod f?), so T generates the
Cohen field K, over k(7'), and the symbol maps to

Tdvdf _ +TdU
f? f

E.IX.3 The pre-residue as a Noetherian operator

Our identifications make it clear that the preresidue

a(TYh(T)dT
G

equals zero for all a(T') € Ap if, and only if, h € (f)I In other words, the K—bilinear
form @ is non-degenerate modulo fI(T). So, if the row matrix mentioned above is
C = ( di dy ... ds ), then h belongs to q if, and only if, the preresidues of all

®(a(T),h(T)) = Res [

{ a(T)di((?))Ih(T)dT }

are 7Zero.
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It remains to prove that the preresidue is a Noetherian operator.

This is most conveniently done by inserting a generic factor ¢’ * (taking care of the

arbitrary factor a(7T)) in the numerator of the residue symbol.

By the exterior differentiation formula and an easy partial integration argument
never involving the T'—variables (the reader may wish to consult [ATY]) one proves
that the symbol

{ h(T)eT““"dT} B { h(T)/J e dT" A df
(N (H™

(where the Jacobian

J = d(fd+17"'7dfn)
d(xfi’+1,...,xg)

¢p),

may be replaced by a symbol

E(T, "™ dT" A df
fd+1 ce fn
the preresidue of which is
E(r,2")e™
So the preresidue was obtained by applying the Noetherian operator

0

k(ﬂW)

corresponding to this exponential. This operator then generates the Noetherian

operators of f15, 1.e., f1.5 is characterized by k and its commutators.

Finally, we see that

k7, 5o (dia) () =0
=

. + (@)(7) + di(7)( = (@)(7) = 0
=

[k, di]  (q)(7) =0

the % denoting action by differentiation. Note that the d; € pS, so d;(7) = 0.
We record this as the following Theorem:

E.IX.4 Theorem. If k(7,0/0z") is a generating Noetherian operator for the ideal
f (or, more generally, for a locally complete intersection (g1, .-.,¢n)), and
q is a p-primary ideal with {7 : q = (dy,...,d,), (or (g) : q = (d)), then the
commutators [k(r,0/92"),d;(7',2")] are generating Noetherian operators for the
ideal q.




E.IX Residues and Noetherian Operators (Sketch). 35

1
Stated differently, if the exponential

E(r,2")e™
generates the solution space for the system
f]” xp(r,2")e™ =0; j=d+1,....n

then the derivatives

9
ox

generate the solution space of the system

[di( 5 )k(r, 2")]e™

q*p(T, x//)eTI‘ — 0

This is particularly nice in case q is irreducible, since there is then only one d;.

E.IX.5 The pre-residue as a cohomology class ("Leray residue").

In the last subsection we constructed the Noetherian operators as the pre-residues

1 :
— 4,00 S K

A

1i_1>nExtg_d(S/fIS, S)® Q" — K[%h 2" = K|

where the symbol Q7 refers to QZ[T']/k-

It is natural to view the third member, the module of generic exponentials, as a
submodule of

K[——] 00"

r—T

where
—d
€ = QZ[T’,T“]/k/I

and [ is the differential ideal generated by all p,dp;p € p. Here all T—variables
enter the construction of inverse polynomials, or formal exponentials.

(if we want to stress the latter point of view the mapping

K[1/fls © Q" = K[——], 0 Q"

r—T

could be written

T,z)e’™ d
MdT A i — g(r,x)e™dr

f7 f
which looks like some kind of Laplace inversion. The A-action on both members is
differentiation w.r.t. to the a variables.)
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=d . . . . .
@ is just our old Cy in the de Rham complex constructed in V.3. We wish to
show that our pre-residue may unambiguously be defined as a cohomology class in

HY(C)).
The point is this. We have been relying on a normalization k[T', T"]. Suppose we
use some other normalization k[U’, U"], constructing thereby a mapping in

1

K| 7

i 1
Now any element in the left member also admits the description

)T’ A df

| =

p(

so we have two constructions.

However, in either case, the scheme is
given form w ~ wg A — — Wy

with, e.g., wo = adT’,a € K.
So we must prove that

df

wo N = ~0=wy~0
f

i.e., that the first condition implies that wg is a coboundary modulo I = (p,dp).

However, modifying wg modulo dI, we may assume wg = adT’,a € K. And, if

adT' A % = d(>_ aidTiy A ‘fr—f)

with all a; € K, then, obviously,

adT' = d(Y_ a;dTy;) (mod I, dI)

E.IX.6 Example:
Let A = k[z,y] = k[T,U], f(z,y) = 2" +y* = 1),

Using U as parameter variable and T as fiber variable we get

[deUeTHUy] _ {ddeeTHUy /QT} _ [deUu — Tx)eT Uy /ZTQ} _I
2 - 2 - -
f (T,U)=(0,0) f f

_ {dUdf(T:z: — 1)eTotVy 143 } Car—1

f o erx—i-uydM
-
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where we used the exterior differentiation formula ("partial integration") in the
second equality:

1—-Tx
2T? f

dfdUeTo+Uy

2T f2 = d( e dUSTHUY) o

OTf

)dTdU

Using T as parameter and U as fiber variable we get instead

1 —
Y erx—HlydT
4p3

and the two are indeed cohomologous. Their difference is the coboundary of

eTr Iy

4T

This idea, viewing the residue as a cohomology class, goes back to Leray, cf. e.g.,

[BRC].

Remark: In this form the pre-residue may be interpreted as the homomorphism
d : E(A/(0)) — E(A/(f)) entering an injective resolution of A. Again, this
construction may be generalized to any dimension/codimension, using fundamental
classes.

E.IX.7 Idempotents Revealed. A Taylor Expansion.

Refer back to the notation of III1.3.-5. "Res" will denote the (scalar) pre-residue,
"res" the Grothendieck residue, i.e., the pre-residue followed by Tr : K — k(7').

q = (Q(f)) will denote a p—primary ideal, locally a complete intersection at p, i.e.,
qS = (ga+1:---gn) = (9)-

Expressing the f(z)—f(T) in the " —T" as column matrices, (f) = Mq(2" —=T"), we
get the same determinant Dy = det My, as in I11.2.-111.3. and the Wiebe Theorems
hold.

We we will still write (¢(z” — 7")) for the (2" — 7")-primary component of q at
(" — 7"} in the ring K[2"].

Similarly, we have expressions
(g(T/7x//) _g(T/77-//)) — M(T”,.’E”)(.’E” _ 7_//)

and a determinant D(2",7"), and, again, the Wiebe Theorems.

Recall the meaning of the idempotents e and ¢y from I11.3.-5. Tt is fairly easy to
prove that e = ¢y (mod (f(7',2")).

Consider an element h(7',2") € S/(g) ~ k(r")[z"]/(g9) € K[2"]/(g(7",2")). We are
looking for a "Taylor expansion" of h. It is natural to expand H = e¢h in monomials
in " — 7" —since eh may be conceived of as an element of K[z" —7"]/(q(2" —7""))

— and then take Tr(eh) € k(7")[z"]/(g).
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We will presently give the expansion as a residue. By cofinality,

Extg_d(S/(g),S) fits into the direct system of Ext-modules used to define the
pre-residue, so we may define the pre-residue

e " |

The non-degeneracy property established in IX.3. still holds.

Since for any locally complete intersection (k) O (g) the canonical projection
S/(g) — S/(k) induces a determinant mapping

A(T) : Extt(S/(9). 5) — Exti(S/(k), S)

we have the determinantal transition formula

Res [ h(T)dT } — Res [ h(T)A(T)dT }

9(T) k(T)

We henceforth fix the notation A for the determinant belonging to the inclusion
(9) < (f)-
Let us put

e(2" . 7"ymj(2") =Y ajumi(z") € K[2"]/(g(r'.2"))
k

with all a;; € K = k(7')[7"]. Here the m,(r',z") € A/q are a K-basis of
E(r', 2" [2"]/(g(7',2"), or, equivalently, a K—basis of K[2"]/(q(x' — 7")). In the
first case, K refers to the Cohen subfield. Recall the meaning of the symbol 2",
with fi(r ’ 2 =0,i=d+1,...,n

We wish to find n;‘(T) such that
Z m] // T”)h(T”)dT

9(T)

Res e(x" 7"h(2") (%)

Their existence follows from the non-degeneracy of the pre-residue form ®. Writing
h(z") as a K-linear combination of the m;(z"), with coefficients h;(7',7"), we see

that we get by with
T" Z oz]km

where the m;‘(T) are a dual basis (for ®) to the m;(T).

It would seem that, by K-linearity, we will get h;(7’,7") in place of h;(v',3") in
the expression outside the residue symbol (since we get h(T’,f”) (mod (¢(T)))
inside it.) This, however, makes no difference since, by I1.7.,
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DO (7_//7 %’//)
1)0(7_//7 7_//)

€ =

and

Do(r",3")(&" = 7") € (F(3") = F(+")) = (0= 0) = (0

Setting h = 1 we see that

S "m0y (T")dT

e = Res j

Let S(z",T") denote the sum in the numerator.
We then see that T/h(T),2/h(T) and zh(z") yield the same result
ex h(2") for any h, so

S E (g) (x// _ T//)
ie., S is a multiple o(T",2")D(2",T") of D(z",T"). Here we may replace
O[(T”,x”) by ﬂ(x//) — O[(:E”,x”).

Our aim is to show that S(z”,7") = D(2",7") (mod g(z")), ie., B(z") = 1
(mod g(z")). For this we need only prove that

=1 (mod ¢(2" —7"))

1" 1"
5(2",7") = Res { D", T")dT ]
T=r

9(T)

"

where ¢(2” — 7"} denotes the (2" — 7")—primary component of (¢) = Q(f). On

account of the following lemma this is the same as proving that

D(T// T//)dT” :|
h //7 " — 5 d h //7 " — 5/ — R 9
(", 7") and h(z",7") es[ o(T)

map the same under all Noetherian operators

Res |: ]’L(J?//,T//)m((l?”)d;l?// :|

(q(x// _ 7_//))

E.IX.8 Lemma.

D(r", T"\dT

st =mes | PUCTT| =
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Proof:

Res { D(r", T")dT ] — Res { A(T)Do(r", T")dT ]

g(T) 9(T)

Do(7", T")dT ]
A(T)

by the determinantal transition formula. And this in turn equals

:Res[

1)0(7_//7 T//)

Res ZO\V 0
Do (7.//7 7.//) S

Do(r",T")dT" | J df ] Dol T"),
=\ )T =p1r =

F(T) J

We now turn to the determination of

Res |: 5(1:",7‘”)m(:17”)d:17" :|

(qfa" = ")

The actions of the two Noetherian pre-residues, w.r.t to 7" and 2" respectively,
commute and may be put together into a super-residue ("transitivity formula")

S R

=x!'=r

D(2",T"Ym(2")dT A dz" ]
T

By the determinant formula, g(T') may be modified by anything in (q(z” — 7)),

e.g., g(2"). So, by another invocation of the determinant formula we obtain

Res D(x”,T”)m(x”)d(T" o ZE”) A d(l?// :| _ Res |: dT/d(TH o x”)m(x”)dx"

(g(T/,T”) _ g(T’,x”)) q((x// _ 7_//)) (T// _ x”) (q(x// _ 7_//)) =

m(x")dx” :|
Res
|: (q(fl?// - 7-//)) Py —y

With §' in place of § we get

Res [ D(",T"ym(z")dT A dx" ] _ Res [ Do(7", T"YA(T)m(z")dTdz" ]

9(T) (g(=" = 7)) 9(T) (g(=" = 7))

Res [ Do(7", 2" ym(2")dT A dz" ] _ Res [ m(2")dz"
B ( Py —y

F(T) (q(z" = 7")) q(z" — 7))

where the last step is just as in the proof of the Lemma.

So, finally we have proved:
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E.IX.9 Theorem. Assumptions as above.
a) The idempotent € of II1.3.-5. is given by
g

" "
6:RGS[D(T x )dT]
T =gt

b) The "Taylor expansion" of h(7',2") modulo (g(r',2")) is given by

o { D(T”,;@é’%@(T)dT }

9 %)(D(ZEH, TH)]’L(ZE/7 T”))T//:T// e

0

(recall that "res" is the trace of "Res")

Trrc/k(r) No(T

Jh(r!, 2" )No(r, 2" )e™ ] om0

TrK/k(r’) D(T”

Here Ng denotes the generating Noetherian operator given by the pre-residue.

Remark: By the equality

D(T//7.'E//)(TH _ x//) — M*(T//7$//)(9(T//) _ g(x//))

one easily proves: For any Noetherian operator N(9/z" )=, killing g(2") at (1)
it holds that N(D) = 0 at any conjugate (7)?;g # 1 of (1) (over k(7). That is,
D(2",7") belongs to all the conjugates of ¢(z" — 7).

The proof uses Leibniz’ rule (since both members contain products) along with
the elementary determinantal criterion for singularity of a matrix, and proceeds by
induction on the degree of the Noetherian operator. This idea elaborates on one of
Kronecker. A quicker proof proceeds along the lines of the computation preceding
the Theorem, where the last "super-residue" (at T" = 777, 2" = 7"") is easily seen
to equal 0.

This observation yields an alternative to the rather subtle introductory arguments,
and the reliance on Theorem II.7.

Using the Reciprocity Theorem, and all that precedes it, one may also prove:
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E.IX.10 Theorem. Consider the system

("true" exponentials) with the "initial data"

a TI‘/EI % '
DX, ax”)(p(rl,x”)e Yarr=0 = Z(mi(X//)mi (8x”)(p(T 2 eT T ) pmg =

where the m;(2") are a k(7')-basis of k(t',2")/(g(7',2"))

Then the solution is given by
mi(T”)ni(T')eTxdT

9(T)

p(r!,2")e™ =res |

Taking the pre-residue instead we get the generic exponential mapping to
!/ 1"
p(r' 2" )e

(Here the X" are indeterminates allowing as to write several equations as one.)

™ under the trace mapping.

We also note the following corollary

E.IX.11 Corollary. The true exponential

eo(7', ") = res [

) |

is that solution p = eq of the system ¢;(0/0x)p = 0 for which the "initial data"

0
DX, T eo)emo = 1
("impulse response; all derivatives, except "the highest", = 0).

Theorem IX.10. is an exact analogue of the one-variable case, which is usually
found by means of Laplace transforms. I do not think it is of any great interest
except in the zero-dimensional case, where pre-residues and residues are the same
thing (as is the case with all linear schemes).

The Theorem can be generalized to situations involving more varieties than one,



E.IX Residues and Noetherian Operators (Sketch). 43

e.g., the ones linked to p by the prime sequence (¢), which again requires a more
global residue and fundamental classes.

E.IX.12 Example:
Refer back to Examples IX.6 and IT1.6. The solutions
1

1 e Ty and Tferx+“ydr
T p

zT — 1

found in that Example correspond to the impulse response solutions belonging to
the respective normalizations.

The idempotent in II1.6. is produced by the pre-residue operator
el
—1 + TW
473

acting on

fla)? = f(T)?
x—T

— 2f(a) + Tf(x) + 2 f(T) + THT)

followed by the evaluation T = 7, (modulo f*(7',z"), of course), as promised by
our Theorem.

The restriction of Theorem E.IX.10 to true exponentials is maybe somewhat arti-
ficial. Here is a more general statement

E.IX.13 Theorem. Consider the system

gilz- )y’ 2")=0;  i=d4+1,....n

with "initial data'

(where the y; are, e.g., formal series). Let

) " eTx
i) = s [ AT

9(T)

Then a formal solution is given by

0
y(z', 2") = Z fi(@a 2" )yi(z')
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We illustrate the Theorem with a simple example

E.IX.14 Example:
The follwing Example is due to Grobner.

We will work in

kley, 2]/ (21 + 23) = k[r{, 7]

where
) 2k+1 _
Trx/kp =0
and
2k k_2k
Trr e =2-(=1)"n
since 75 = —71}

Consider the equation

(27 + 23) *y(2f,25) =0
y(fl?l;o) = y1($1)

y
_7 0) =
8172 (.’171, ) y2(x1)
Here
0 0
DX X —
( ’ 817//) 2 + 8172
and
s | (X2 Ty)e™™dT Ty X247 o
TEyT: | T TRAD T
So
f( )_T 1 To2x2 __ 1( T2$2+ —T21‘2)_
1\T1,T2) = rQe _2e e =
Z 2k 2k
f ( ) — T ( 1 7'21‘2) — 1 ( T2X2 —T21‘2) —
2071, T2 ) = 1T T2e _2T2 e € =
2k 2k+1
- Z 2k +1
and

y(z1,22) = f1(0/0x1,22)yr + f2(0/0x1, 22)y2
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E.X Examples of Noetherian Operators

E.X.1 Example: A 0-dimensional Scheme
This example is taken from [EHR].

Consider the (x1,z2)- primary ideal

q=(f(x),9(x)) = (21 — 22,23) D (F.G) = (27, 23);

in A = k[zq,22]. The easiest way to compute the Notherian operators belonging to
this ideal is to compute the Taylor expansion:

f(M17M2) — eulDlJrungf(O7 0)

Here p; denotes the class of z; modulo q; D; is 9/0z; .
Using
1=y = i = g =0
and the easily verified k-linear independence of 1, uq, p2, pt1 12, we find

1 1
—piD} 4+ —piDY)(1 + p2Dy) =

p1Di+p2Do 1 D
e (14 1Dy + 5 G

1 1
Ml/«bz(éDi’+D1D2)+/«62(§D3+D2)+/«L1D1 +1 (%)

From this we see that the k-vector space of Noetherian operators is generated by

16 o2

D=
[6 8xi’ + 851718172](070)

along with
1
DY =D, z,] = §Df +Dy; D® =[D,x]; DU =[DW 5] = [DP), ay]

all evaluated at (0,0)

E.X.2 Example: The same example reciprocated

Using our previous identification way may look at the solutions of the system

0 0
f(a—x)p = g(a—x)p =0
One solution is

3
€o = ] + 172

6



46 E.X Examples of Noetherian Operators

and the remaining solutions may be found on repeated differentiation. Substituting
x; for D; in the expression (k) we can read off a basis for the solution space as the
coeflicients in

1 4 1,
(6171 + @y o) p2 + (5171 + @9y + 1 pn + 1
which may also be written

0 ok 0 0
D(u, 8_.1:)60 = (m +/«61£ + /«Lzﬂ + pipi2 - 1)eg

Here, D(u, x) is the determinant of the matrix M(u, ) in
f(@-f(/i)) (xl—m)
= M(p,x ;
(5o ) =M (220
xf—@—/«bf—}-/«bz _ T+ H1 -1 T — M1
x5 — 15 0 Ty + 2 Ty — 12
and eg is the unique solution of the system above satisfying

0
# 5-)e0(0,0) =1

i.e., the "impulse response' of IX. 11.

D

Another invocation of Wiebe’s Theorem shows that

i _ i 4 a1 x] — 1o
3 0 1 3

with determinant d(z) = 27 4 x4, hence (z7,23) : (27 — 29,23) = 27 + z9. The
impulse response solution for the system F(9/0z)p = G(0/0x)p = 0 is easily found
to be
L 4

EO = 6.’171 9

The duality theory may be used to explain why
0
=d(—)E
0 (ax JEo

By Theorem E.IX.4. we see that the solution space of the system (F,G)*p =0
is mapped onto the the solution space of (f,g) * p = 0 by the differential operator

d(0/0x)
Also, let Dy(x, 1) denote the determinant of the square matrix M in

()= ()

D1(0, ) = d(x)D(0, 2)
and the fact that all terms of Dy (u, ) except the constant are derivatives of the

From the obvious fact that

impulse response one easily sees that

0 0
Dijt, 5-)d(5-)Fo = 1

as claimed.
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E.X.3 Example: A Linear 1-dimensional Scheme
This example is discussed in [HOR], [BJO], and [PAL].

Here we discuss the primary ideal q = (23, 2 — 2123) belonging to the prime ideal
p = (r2,23) € kl[z1, 22, 23].

Again, the easy way out is to compute the Taylor expansion
et = e P (1 4 gy Dy)(1 + pisDs) =

" P (1 + pipg Do )(1 + p3 D3) =
6“1D1(1 + pips Do + p13D3)

from which we read off the operators

(at (71,0,0)) generating the Noetherian operators as vector space over k(7).

E.X.4 Example: A Non-linear Example

Let us look at the prime ideal p defining the affine cone over the twisted cubic,
p = (5,5, st%,t%) € A = Kk[xg, 129, 73], It is well-known that p possesses the
following generators:

2 . _ . _ 2
e =1y —xor2; [ =x1T9 —20x3; ¢ = 25— T1T3

Also pAp = (e,9)Ap; (e,9) : p = (21, 22)
Let us look at the ideal

(2 _ _ 2 3
q:(e=2a] —xor2, h=1a3f—129=—n01; + 2012203 — )

which is easily seen to contain p2. To see that it is p-primary set the two generators
equal to zero:

r3f —129=0

e=0;23e =0 x3(2] —2or2) = 22f — 219 =0

where we used x3¢ — a9 f + 219 =0
If this does not entail f,¢g = 0, then the determinant 23 — xy23 = 0, i.e., g = 0.

Using the relation x9e — 21 f + 209 = 0 we similarly find (on multiplying e = 0 by
rg) that f = 0, contradiction.

Since q O p? we should look for first-order operators characterizing q. They are
easily found from the fact that the linear parts of e and h, at (75,7, 79 ,73), are

near ependent. Writing vy = 2 — 7 ;uq = 25 — 7, we fin
1 ly dependent. Writ ! i y S find

e(r,2") —e(r',7") = 21yuy — Toua + higher terms
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h(r' 2"y — h(7',7") = mo(=273u1 + mauz) + higher terms

which are linearly dependent because the determinant 2(mm — 7973) =0

The obvious choice for a Notherian operator killing q is therefore

0 Lo 0
T28x1 Tga:l?g

at (75,717 ,73). It will kill the linear parts and the higher parts as well (on
evaluation), since their first derivatives are of positive degree in the wuy, us.

The possible commutators are constants.

E.X.5 Example: A Reducible 0-dimensional Example
This example elaborates on an example in [BEA]

Consider the ideal
(F7 G) = (xif + x§7 LT1l2 — 2173) C (.’171,:172) C k[.’l?l,:ljg]

It is not (21, x2)- primary, but actually has five different primary components. We
wish to find the (x1, 22)-primary component.

xi’ + x% _ xf T T
r1x9 — 21:3 o —21:% To
The determinant of the square matrix is D = —a3(1 + 2z7)

By Wiebe’s Theorem

First of all, we note

(F,G):D = (x1,22); (F,G):(21,22)=(D,F,QG)

From the fact that 23 belongs to m = (2, 23), and 1 4 227 does not, one easily
infers that the m-primary part of (F,G) is

(F.G): (14223) = q

and that
(14 227) (2}, 25) C (F,G)

for large enough n. Indeed,

4 3 2
9 7\ [ 1+ 22] — 225 —xo F
(1+2x1)<x3>—< o —xf)(G (%)

The determinant of the square matrix is (—xi’ + x%)(l + 21:%)
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Now, in this case a generating Noetherian operator is given by the residue symbol
as explained in E.IX.3:

p(1+ 2x2)dx1dx2 _
ReS(Op) FlG =
(=2} + 23)(1+227)* /(1 + 227)pdarday | _ 1 0* 1 0°
Res(o.0) z] = 2 Oz + 6 O3 )p(0,0)

Here we used the "determinantal formula" given in any account of residues ([SS],

[KRD], [DIS], [BEA]), and, implicitly, in IX.7, and Example X.2. above. The

denominator (1 4+ 21:%)2 comes from the left member of ()

This operator, along with its commutators, characterize the ideal q. By the
Reciprocity Theorem, g € q if and only if

¢(0/0x)(=3x3 +27) =0
whence, after some computation,

q = (27 + 23, v102)
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